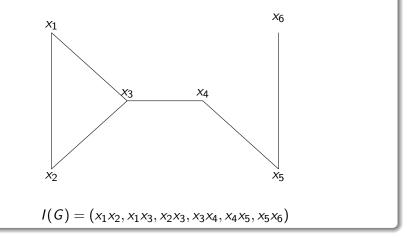
Edge-weighted edge ideals of very well-covered graphs

柴田 孝祐 (岡山大学) 寺井 直樹 (岡山大学)

This is a based on a joint work with S. A. S. Fakhari and S.Yassemi. (arXiv:2003.12379)

K:a field. $S = K[x_1, ..., x_n] (= K[x_1, ..., x_h, y_1, ..., y_h])$: a polynomial ring. G = (V(G), E(G)): a simple graph without isolated vertices, and $V(G) = \{x_1, ..., x_n\}$. $I(G) := (x_i x_j | \{x_i, x_j\} \in E(G)) \subset S$: the edge ideal of *G*.

G is called unmixed if I(G) is unmixed. *G* is called Cohen-Macaulay(CM for short) if S/I(G) is CM. Example 1.1



Theorem 1.2 (Gitler-Valencia, 2005)

Suppose G is an unmixed graph. Then $2 \operatorname{ht} I(G) \ge \# V(G)$

Definition 1.3

Suppose G is an unmixed graph. Then G is called very well-coverd if 2 ht I(G) = #V(G).

(*) $V(G) = X \cup Y$, $X \cap Y = \emptyset$, where $X = \{x_1, \ldots, x_h\}$ is a minimal vertex cover of G and $Y = \{y_1, \ldots, y_h\}$ is a maximal independent set of G such that $\{x_1y_1, \ldots, x_hy_h\} \subset E(G)$.

Proposition 1.4 (Morey-Reyes-Villarreal, 2008, Crupi-Rinaldo-Terai, 2011)

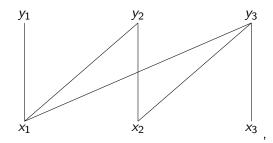
Let #V(G) = 2h, and assume that the vertices of G are labeled such that the condition (*) is satisfied. Then G is very well-coverd if and only if the following conditions hold.

(i) If $x_i y_j$, $x_j z_k \in E(G)$ then $x_i z_k \in E(G)$ for distinct *i*, *j* and *k* and for $z_k \in \{x_k, y_k\}$.

(ii) If $x_i y_j \in E(G)$ then $x_i x_j \notin E(G)$.

- (i) If $x_i y_j$, $x_j z_k \in E(G)$ then $x_i z_k \in E(G)$ for distinct *i*, *j* and *k* and for $z_k \in \{x_k, y_k\}$.
- (ii) If $x_i y_j \in E(G)$ then $x_i x_j \notin E(G)$.

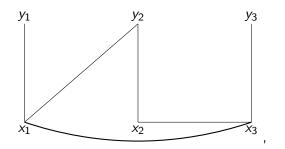
Example 1.5



is very well-coverd.

- (i) If $x_i y_j$, $x_j z_k \in E(G)$ then $x_i z_k \in E(G)$ for distinct *i*, *j* and *k* and for $z_k \in \{x_k, y_k\}$.
- (ii) If $x_i y_j \in E(G)$ then $x_i x_j \notin E(G)$.

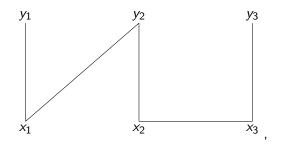
Example 1.6



is very well-coverd.

- (i) If $x_i y_j$, $x_j z_k \in E(G)$ then $x_i z_k \in E(G)$ for distinct *i*, *j* and *k* and for $z_k \in \{x_k, y_k\}$.
- (ii) If $x_i y_j \in E(G)$ then $x_i x_j \notin E(G)$.

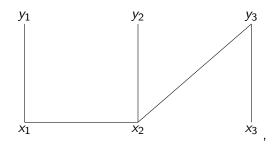
Example 1.7



is not unmixed.

- (i) If $x_i y_j$, $x_j z_k \in E(G)$ then $x_i z_k \in E(G)$ for distinct *i*, *j* and *k* and for $z_k \in \{x_k, y_k\}$.
- (ii) If $x_i y_j \in E(G)$ then $x_i x_j \notin E(G)$.

Example 1.8



is very well-coverd.

(*) $V(G) = X \cup Y, X \cap Y = \emptyset$, where $X = \{x_1, \ldots, x_h\}$ is a minimal vertex cover of G and $Y = \{y_1, \ldots, y_h\}$ is a maximal independent set of G such that $\{x_1y_1, \ldots, x_hy_h\} \subset E(G)$.

Lemma 1.9

Let #V(G) = 2h, and assume that the vertices of G are labeled such the condition (*) is satisfied. If G is a CM, then there exists a suitable simultaneous change of labeling on both $\{x_i\}_{i=1}^h$ and $\{y_i\}_{i=1}^h$ such that $x_iy_j \in E(G)$ implies $i \leq j$.

(*) $V(G) = X \cup Y, X \cap Y = \emptyset$, where $X = \{x_1, \dots, x_h\}$ is a minimal vertex cover of G and $Y = \{y_1, \dots, y_h\}$ is a maximal independent set of G such that $\{x_1y_1, \dots, x_hy_h\} \subset E(G)$. (**) $x_iy_i \in E(G)$ implies $i \le j$.

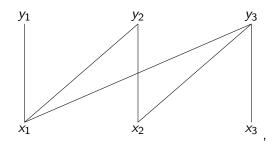
Proposition 1.10 (Crupi, Rinaldo, Terai, 2011)

Let #V(G) = 2h and assume the conditions (*) and (**). Then the following conditions are equivalent:

- G is Cohen-Macaulay;
- O is unmixed;
- The following conditions hold:
 - (i) If x_iy_j, x_jz_k ∈ E(G) then x_iz_k ∈ E(G) for distict i, j, k and for z_k ∈ {x_k, y_k};
 - (ii) If $x_i y_j \in E(G)$ then $x_i x_j \notin E(G)$.

- (i) If $x_i y_j, x_j z_k \in E(G)$ then $x_i z_k \in E(G)$ for distict i, j, k and for $z_k \in \{x_k, y_k\}$;
- (ii) If $x_i y_j \in E(G)$ then $x_i x_j \notin E(G)$.

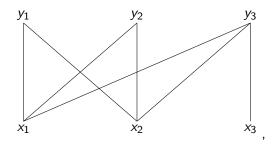
Example 1.11



is CM very well-coverd.

- (i) If $x_i y_j, x_j z_k \in E(G)$ then $x_i z_k \in E(G)$ for distict i, j, k and for $z_k \in \{x_k, y_k\}$;
- (ii) If $x_i y_j \in E(G)$ then $x_i x_j \notin E(G)$.

Example 1.12



is unmixed and very well-coverd, but not CM .

Definition 1.13

Let $w : E(G) \longrightarrow \mathbb{Z}_{>0}$ be an edge weight on G and $G_w := (G, w)$ be an edge weighted graph.

$$I(G_w) := ((x_i x_j)^{w(x_i x_j)} | x_i x_j \in E(G))$$

 G_w is called unmixed if $I(G_w)$ is unmixed. G_w is called CM if $S/I(G_w)$ is CM.

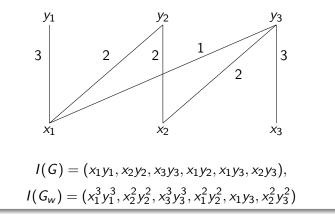
Remark 1.14

$$\sqrt{I(G_w)}=I(G)$$

$$I(G_w)$$
 is unmixed $\Longrightarrow I(G)$ is unmixed.
 $I(G_w)$ is CM $\Longrightarrow I(G)$ is CM.

But the converse is not always true.

Example 1.15

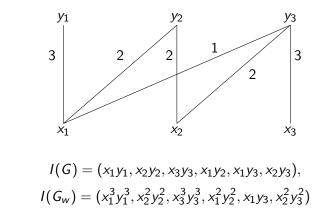


Theorem 1

Let G be a very well-covered graph with n = 2h vertices, and ht I(G) = h. We assume the condition (*). Let w is an edge weight of G. Then G_w is unmixed if and only if the following conditions hold:

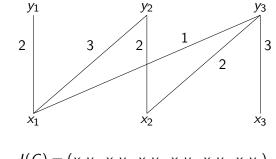
- (i) If $x_i z_j \in E(G)$ then $w(x_i z_j) \le w(x_i y_i)$ and $w(x_i z_j) \le w(x_j y_j)$ for distinct *i*, *j* and for $z_j \in \{x_j, y_j\}$.
- (ii) If $x_i y_j$, $x_j z_k \in E(G)$ then $w(x_i z_k) \le w(x_i y_j)$ and $w(x_i z_k) \le w(x_j z_k)$ for distinct *i*, *j* and *k* and for $z_k \in \{x_k, y_k\}$, or for distinct *j* and *i* = *k* and for $z_i = y_i$.

Example 2.1



Then I(G) and $I(G_w)$ are unmixed

Example 2.2



 $I(G) = (x_1y_1, x_2y_2, x_3y_3, x_1y_2, x_1y_3, x_2y_3),$ $I(G_w) = (x_1^2y_1^2, x_2^2y_2^2, x_3^3y_3^3, x_1^2y_2^2, x_1y_3, x_2^2y_3^2)$ Then I(G) is unmixed, but $I(G_w)$ is not unmixed.

Theorem 2

Let G be a Cohen-Macaulay very well-covered graph. Let w be an edge weight of G. Then the following conditions are equivalent:

G_w is unmixed.

2 *G_w* is Cohen-Macaulay.

Conjecture 2.3

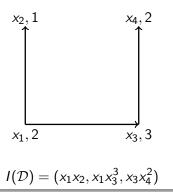
Let G be a Cohen-Macaulay very well-covered graph. Then G_w is sequentially Cohen-Macaulay.

Definition 2.4 (Pitones-Reyes-Toledo, 2019)

Let $\mathcal{D} = (V(\mathcal{D}), E(\mathcal{D}))$ be an oriented graph with $V(\mathcal{D}) = \{x_1, \ldots, x_n\}$, and let $\omega : V(\mathcal{D}) \longrightarrow \mathbb{Z}_{>0}$ be a *vertex-weighted* on \mathcal{D} and set $\omega_j = \omega(x_j)$. Then the *vertex-weighted edge ideal* of \mathcal{D} is defined by

$$I(\mathcal{D}) = (x_i x_j^{\omega_j} | (x_i, x_j) \in E(\mathcal{D})).$$

Example 2.5



20 / 23

Conjecture 2.6 (Pitones-Reyes-Toledo, 2019)

Let \mathcal{D} be a vertex-weighted oriented graph and let G be its underlying graph. If $I(\mathcal{D})$ is unmixed and I(G) is CM, then $I(\mathcal{D})$ is CM.

Example 2.7

Let char(\mathcal{K}) = 0 and $\mathcal{S} = \mathcal{K}[x_1, \ldots, x_{11}]$.

 $I(G) = (x_1x_3, x_1x_4, x_1x_7, x_1x_{10}, x_1x_{11}, x_2x_4, x_2x_5, x_2x_8, x_2x_{10}, x_2x_{11}, x_3x_5, x_3x_6, x_3x_8, x_3x_{11}, x_4x_6, x_4x_9, x_4x_{11}, x_5x_7, x_5x_9, x_5x_{11}, x_6x_8, x_6x_9, x_7x_9, x_7x_{10}, x_8x_{10}).$

This ideal comes from the triangulation of the real projective plane.

$$I(\mathcal{D}_{1}) = (x_{1}x_{3}, x_{1}x_{4}, x_{1}x_{7}, x_{1}x_{10}, x_{1}x_{11}^{2}, x_{2}x_{4}, x_{2}x_{5}, x_{2}x_{8}, x_{2}x_{10}, x_{2}x_{11}^{2})$$

$$x_{3}x_{5}, x_{3}x_{6}, x_{3}x_{8}, x_{3}x_{11}^{2}, x_{4}x_{6}, x_{4}x_{9}, x_{4}x_{11}^{2}, x_{5}x_{7}, x_{5}x_{9}, x_{5}x_{11}, x_{6}x_{8}, x_{6}x_{9}, x_{7}x_{9}, x_{7}x_{10}, x_{8}x_{10}).$$

 $I(\mathcal{D}_2) = (x_1x_3, x_1x_4, x_1x_7, x_1x_{10}, x_1x_{11}, x_2x_4, x_2x_5, x_2x_8, x_2x_{10}, x_2x_{11}, x_3x_5, x_3x_6, x_3x_8, x_3x_{11}, x_4x_6, x_4x_9, x_4x_{11}, x_5x_7, x_5x_9, x_5x_{11}, x_6x_8, x_6x_9, x_7^2x_9, x_7x_{10}, x_8x_{10}).$

Then I(G) is CM. However, *Macaulay2* computation shows that $I(\mathcal{D}_1)$ is unmixed and it satisfies (S_2) condition, but is not CM, and $I(\mathcal{D}_2)$ is unmixed, but does not satisfy (S_2) condition.

Example 2.8

Let char(
$$K$$
) = 0 and $S = K[x_1, ..., x_{11}]$.

 $I(G_{w_1}) = (x_1x_3, x_1x_4, x_1x_7, x_1x_{10}, x_1x_{11}, x_2x_4, x_2x_5, x_2x_8, x_2x_{10}, x_2x_{11}, x_3x_5, x_3x_6, x_3x_8, x_3x_{11}, x_4x_6, x_4x_9, x_4x_{11}, x_5x_7, x_5x_9, x_5x_{11}, x_6x_8, x_6x_9, x_7x_9, x_7x_{10}, x_8^2x_{10}^2).$

 $I(G_{w_2}) = (x_1^2 x_3^2, x_1^2 x_4^2, x_1^2 x_7^2, x_1^2 x_{10}^2, x_1^2 x_{11}^2, x_2^2 x_4^2, x_2^2 x_5^2, x_2^2 x_8^2, x_2^2 x_{10}^2, x_2^2 x_{11}^2, x_3^2 x_5^2, x_3^2 x_6^2, x_3^2 x_8^2, x_3^2 x_{11}^2, x_4^2 x_6^2, x_4^2 x_9^2, x_4^2 x_{11}^2, x_5^2 x_7^2, x_5^2 x_9^2, x_5^2 x_{11}^2, x_6^2 x_8^2, x_6^2 x_9^2, x_7^2 x_9^2, x_7^2 x_{10}^2, x_8 x_{10}).$

Then I(G) is Cohen-Macaulay.

However, *Macaulay2* computation shows that $I(G_{w_1})$ is unmixed, but does not satisfy (S_2) condition.

On the other hand, *Macaulay2* computation shows that $I(G_{w_2})$ is unmixed and it satisfies (S_2) condition, but it is not Cohen-Macaulay.